
A Language for Describing Attacks on Cyber-Physical

Systems

Mark Yampolskiya∗, Péter Horváthb, Xenofon D. Koutsoukosc, Yuan Xuec,
and Janos Sztipanovitsc

aUniversityofSouthAlabama

bBudapest University of Technologyand Economics

cInstitute for Software Integrated Systems, Vanderbilt University

Abstract

The security of cyber-physical systems is of paramount importance because
of their pervasiveness in the critical infrastructure. Protecting cyber-physical
systems greatly depends on a deep understanding of the possible attacks and
their properties. The prerequisite for quantitative and qualitative analyses
of attacks is a knowledge base containing attack descriptions. The structure
of the attack descriptions is the indispensable foundation of the knowledge
base.

This paper introduces the Cyber-Physical Attack Description Language
(CP-ADL), which lays a cornerstone for the structured description of attacks
on cyber-physical systems. The core of the language is a taxonomy of attacks
on cyber-physical systems. The taxonomy specifies the semantically distinct
aspects of attacks on cyber-physical systems that should be described. CP-
ADL extends the taxonomy with the means to describe relationships between
semantically distinct aspects, despite the complex relationships that exist for
attacks on cyber-physical systems. The language is capable of expressing
relationships between attack descriptions, including the links between attack
steps and the folding of attack details.

Keywords:
Cyber-Physical Systems (CPS), Security, Cross-domain attacks, Taxonomy,
Attack description language

∗Corresponding author. E-mail address: yampolskiy@southalabama.edu

Preprint submitted to International Journal of Critical Infrastructure Protection

1. Introduction

Cyber-physical systems (CPSs) have become increasingly pervasive in
modern society. They are used in all kinds of unmanned vehicles and au-
tomated manufacturing plants, butmore importantly, they are used in the
critical infrastructure electrical power grids, transportation systems and
healthcare systems. At this time, onlya handful of attacks on cyber-physical
systems have been detected in thewild. Nevertheless, it is reasonable toas-
sume that attacks oncyber-physical systems will rapidly escalate with in-
creasing connectivity and evolving business models. The means of attacks
on cyber-physical systems are essentially similar to those used to target in-
formation technology and communication ssystems. However, the goals of
cyber-physical attacks and the propagation of their effects are considerably
different. The analysis – and ultimately the understanding – of attacks on
cyber-physical systems depends on the ability to describe the attacks in a
systematic and comprehensive manner.

According to Byres and Lowe [5], attacks on industrial control systems
and critical infrastructures assets can be traced as far back as 1995. Cur-
rently, the most famous attack is Stuxnet [1, 4]. Discovered in 2010, it
supposedly operated undetected for more than three years [20]. The most
notable aspect of the Stuxnet attack is the fact that it inflicted physical dam-
age to an industrial infrastructure (i.e., uranium hexafluoride centrifuges)
via the cyber domain. The March 2000 attack on Maroochy Water Ser-
vices in Queensland, Australia is another prominent example of an attack
on an industrial infrastructure. The attack disrupted pumping operations
and suppressed alarms, resulting in the release of untreated sewage into local
waterways [9]. The possibility of similar cross-domain attacks on modern
automobiles has been reported. Several researchers (see,e.g., [2, 8]) have
shown that elaborate cyber-attacks can lead to physical consequences, in-
cluding disabling the brakes of an automobile, killing the engine while the
automobile is moving at high speed, permanently locking the doors and ma-
nipulating the speed indicator. Other researchers [3, 21] haved emonstrated
the ability to compromise quad-rotor unmanned aerial vehicles (UAVs) and
microsatellites.

Huang et al. [6], emphasize that attacks on industrial infrastructures can
have economic consequences. Moreover, the attack consequences can be am-

2

plified by the interdependencies existing within a single cyber-physical system
as well as those existing between multiple cyber-physical systems. Rinaldi et
al. [7], specify four types of interdependencies: physical, cyber, geographical
and logical. Because of the interdependencies, the effects of anattack can
propagate through multiple domains and inflict secondary damage to other
cyber-physical systems and infrastructures. Specifically, attacks on cyber-
physical system – even attacks executed in cyberspace – can cross domain
boundaries, propagating and amplifying the effects in the domains and caus-
ing damage in multiple domains.

This paper describes the Cyber-Physical Attack Description Language
(CP-ADL), which is based on a taxonomy specified in [12]. The language
can express conventional cyber attacks as well as cross-domain attacks on
cyber-physical systems. CP-ADL provides a structure for describing a variety
of attacks, an important prerequisite for qualitative and quantitative anal-
yses of attacks on cyber-physical systems. These analyses provide valuable
knowledge and understanding of the structural properties and probabilities
of attacks. Furthermore, the analyses can help identify the degrees to which
functionally equivalent architectural elements are vulnerable to various types
of attacks. As such, the resulting knowledge and understanding are vital to
improving cyber-physical system security and dependability.

2. Related work

In previous work [12], we analyzed the sufficiency of several cyber secu-
rity taxonomies for describing attacks on cyber-physical systems. Because
cyber security focuses only on attacks that execute in and influence the cyber
domain, these taxonomies are unable to express cross-domain effect propa-
gation that is characteristic of attacks on cyber-physical systems. To address
this deficiency, we created a novel six-dimensional taxonomy for describing
cross-domain attacks on cyber-physical systems; Section 3 provides a brief
overview of this taxonomy. Since the current knowledge and understanding
of cyber-physical attacks are somewhat limited, the taxonomy only defines
the dimensions (i.e., the aspects to be described), not the values correspond-
ing to the dimensions. This approach has, in fact, been adopted in the cyber
security domain. An example is the taxonomy of Hansman and Hunt [10],
which supports structured human-readable descriptions of newly discovered
attacks and is used by major entities such as US-CERT.

3

Although taxonomies specify structures and, in some cases, support ele-
ments of the structures, the definition of a description language based on a
taxonomy can be a challenging task. The primary purpose of a description
language based on the taxonomy defined in [12] is the structured expression
of human-readable attack descriptions. Therefore, the description language
should support variable-length descriptions in every dimension.

The importance of a description languagegoes beyond the mere spec-
ification of a data format for a taxonomy. Especially important is that
a description language provide the capability to express metadata such as
the relationships between the elements of various dimensions. As will be
discussed in Section 3, this is a critical property for describing attacks on
cyber-physical systems, especially if multiple elements must be specified for
every dimension of anattack step.

As in the case of taxonomies, the absence of cross-domain considera-
tions in cyber attack description languages hinders their application to the
cyber-physical domain. Nevertheless,these languages can provide valuable
guidance in developing CP-ADL. Of special interest are the language used to
specify US-CERT alerts [15] and the Common Vulnerabilities and Exposures
(CVE) description language [14] used in the National Vulnerability Database
[13]. Both the languages uniquely identify attacks and describe them in the
form of human-readable free text that is separated into semantically dis-
tinct sections. A US-CERT alert contains sections that provide the affected
systems, attack overview, description, impact, solution, references and re-
vision history. The CVE format provides a structured means to exchange
information about security vulnerabilities [16]; a CVE description includes
the standard identifier number with a status indicator, a brief description
and references to related vulnerability reports and advisories. The Open
Vulnerability and Assessment Language (OVAL) uses the publicly released
vulnerabilities identified in the CVE list as the basis for most vulnerability
definitions [17, 18]. An important point is that all the languages listed above
as well as other related languages use data formats such as text and XML
that support variable-length elements (see, e.g., the NVD-CVE feed schema
[19]).

3. Taxonomic foundation for language design

The term taxonomy has many meanings in the research literature (see,
e.g., [12]). This work considers a taxonomy to be a specification of seman-

4

tically distinct aspects that are to be described. This type of taxonomy is
perfectly suited to establish a basis for an attack description language that,
additionally, provides the means to specify metadata information (i.e., rela-
tionships between elements of different taxonomy dimensions).

The basis for the Cyber-Physical Attack Description Language (CP-ADL)
is the six-dimensional taxonomy introducedin [12]. The original goal of the
taxonomy was to specify properties that should be expressed in descriptions
of attacks on cyber-physical systems, including cross-domain attacks. How-
ever, it was subsequently discovered that the same structure can be used to
describe countermeasures against cyber-physical attacks, which also exhibit
cross-domain properties. Therefore,the taxonomy dimensions were renamed
to enable them to describe attacks as well as defensive measures [21] (see
Fig. 1).

At this point, it is important to discuss the rationale for the selected tax-
onomy dimensions. Attacks and defensive measures can be described in terms
of an Action (i.e., execution of some Method), the success of which depends
on the fulfilment of one or more Preconditions. The execution of a Method
introduces one or more changes in a system; the changes can be immediate
changes (described using the Cause dimension group) and follow-up changes
(described using the Effect dimension group).The distinction between these
two dimension groups reflects the fact that, due to the complex dependen-
cies and interdependencies existing in cyber-physical systems, any change in
a cyber-physical system can result in the propagation of Effects. Note that
Effects are also changes in a system, which can induce further consequences.
Section 5 discusses how CauseEffect causality chains can be described using
CP-ADL.

A distinguishing feature of the taxonomy is the clear distinction between
Influenced Element and Affected Element. Because these dimensions are
independent of each other, an element of one dimension can belong to the
cyber or physical domain regardless of the domain affiliation of the other
element. This makes it possible to describe cross-domain attacks.

Based on the domains of elements, it is possible to define four attack cat-
egories: (i) cyber-to-cyber (C2C); (ii)cyber-to-physical (C2P); (iii) physical-
to-physical (P2P); and (iv) physical-to-cyber (P2C). C2C attacks have been
studied extensively by the cyber security community. The material science
community has traditionally focused on aspects of P2P attacks (e.g., phys-
ical component wear due to speed, temperature and vibration). P2C effect
propagation has been studied by the computer dependability and embedded

5

Affected Element
(i.e., what object has been
affected by the manipulation)

Impact
(i.e., what has been

changed)

Influenced Element
(i.e., what is the object of
the manipulation)

Influence
(i.e., what is changed on
the influenced element)

Method
(i.e., how the influence
is performed)

Preconditions
(i.e., what are prerequisites

for execution of the method)

Figure 1: Taxonomy of Cyber-Physical Attacks [12]

systems security communities (e.g., side-channel attacks on embedded sys-
tems). However, the C2P category of attacks has barely been investigated
as of this time.

Cyber-physical systems are exposed to attacks belonging to all four cate-
gories. Moreover, complex attacks can manifest properties of multiple cate-
gories at the same time. For instance, complex attacks usually involve mul-
tiple stages, each of which could belong to a different category. Furthermore,
simultaneous attacks of different categories are also possible.

The taxonomy has been used to describe attacks encountered in several
case studies. These includethe Stuxnet attack on Iran’s uranium hexafluo-
ride centrifuges [4], attacks on a modern automobile [2], attacks identified
during a vulnerability assessment of a quad-rotor UAV [3] and attacks on a
microsatellite with a propulsion system [21]. In all these case studies, the
proposed structure was able to express all the relevant aspects of conventional
cyber attacks and cross-domain cyber-physical attacks. However, the need
to express metadata alongside the properties specified by the taxonomy di-
mensions was also recognized. In particular, it is vital to express the complex
relationships that exist between the different dimensions of a single attack
(see Fig. 2) as well as the relationships that exist between different attacks.
These diverse concepts can only be expressed by a description language that

6

1

N

1 N

N N

N

1

N

1

Figure 2: Cardinality relationships between the taxonomy dimensions

is founded on the taxonomy.

4. CP-ADL: Cyber-Physical Attack Description Language

In this section we introduce the Cyber-Physical Attack Description Lan-
guage (CP-ADL). CP-ADL is a natural extension of the taxonomy defined
in [12]. Therefore, this language supports description of both conventional
cyber as well as cross-domain attacks on CPS. Additionally, CP-ADL incor-
porates the capability to specify medatada information, and thus overcomes
the taxonomy limitations outlined in Section 3.

In this section, we first define the CP-ADL structure and then outline
how a XML data format can be defined upon this structure. Please note
that while our explanations will mainly emphasize the description of attacks,
the same is applicable to the description of defensive measures.

4.1. CP-ADL structure

After considering various options, we have decided to pursue the cause-
centric language definition. In the case of attack or defense measures, this is
the element immediately influenced by the action. Our main reasons for this
decision are as follows:

7

• Every CPS model consists of various components and their intercon-
nections. Both CPS components and their interconnections can be
seen as potential Influenced Elements affected, e.g., by various attack
Methods. Therefore, such centricity should simplify the vulnerability
analysis performed via traversing interconnected CPS components.

• Such centricity is naturally suitable for building a knowledge base of
vulnerabilities, attacks, and consequences of attacks on various tar-
gets. This knowledge base can then be used in vulnerability analysis
approaches traversing cause-effect chains associated with the CPS el-
ements. Furthermore, the knowledge base can be easily extended if a
new Method to Influence some CPS component is discovered.

• The knowledge base about target vulnerability can become very useful
for consideration of defense measures. This is especially true in the
case of alternative functionally equivalent architectural solution. De-
signers of a new CPS should be capable to select one of such solution
based on their non-functional properties, such as costs, weight, but also
robustness and resilience against various kinds of attacks.

The presentation of the CP-ADL structure is arranged as follows. First
we discuss the relationships between dimensions within groups. After that
we explain the relationships between these dimension groups. Formally, the
structure is introduced in both BNF form commonly used for the language
definitions as well as in form of semantically equivalent UML class diagrams.
We have decided to duplicate definitions in order to address readers with
different backgrounds.

4.1.1. Dimension group ”Cause”

It is reasonable to assume that every single attack targets only a single
(Influenced Element, Influence) tuple. Indeed, this may be true in the major-
ity of the cases. Nevertheless, description of some attacks (e.g., correlation
of information from multiple sources) will require possibility to instantiate
multiple (Influenced Element, Influence) tuples at the same time. Therefore,
we define the group Cause as follows (the corresponding UML diagram is
depicted in Figure 3):

8

<Cause> ::= (<Influenced Element>, <Influence>)

 [AND (<Influenced Element>, <Influence>)]*

<Influenced Element> ::= (<Category>, <Name>)

<Influence> ::= (<Type>, <Description>)

<Effect> ::= (<Affected Element>, <Impact>)

 [, (<Affected Element>, <Impact>)]*

<Affected Element> ::= (<Category>, <Name>)

<Impact> ::= (<Type>, <Description>)

<Action> ::= (<Method>, <Preconditions>)

 [OR (<Method>, <Preconditions>)]*

<Method> ::= (<Category>, <Description>)

<Preconditions> ::= <Precondition>

 [AND <Precondition>]*

<Precondition> ::= (<Category>, <Description>)

<CausalChain> ::= <AtomicAttack>

 [, <AtomicAttack>]*

<AtomicAttack> ::= ([<CausalChain>,](<Cause>, <Action>)

 [AND (<Cause>, <Action>)]*,

 <Effect>)

<!DOCTYPE CPADL [

 <!ELEMENT CPADL (CausalChain*)>

 <!ATTLIST CPADL

 name version #REQUIRED>

 <!ELEMENT CausalChain (AtomicAttack*)>

 <!ATTLIST CausalChain

 name ChainID #IMPLIED>

 <!ELEMENT AtomicAttack (Tuple_Targets_Attacks,

 Effects)>

 <!ATTLIST AtomicAttack

 name AttackID #IMPLIED

 name Details_RefCausalChainID #IMPLIED>

 <!ELEMENT Tuple_Targets_Attacks (Targets,

 Attacks)>

 <!ELEMENT Targets (

 Tuple_InfluencedElement_Influence*)>

 <!ELEMENT Tuple_InfluencedElement_Influence (

 InfluencedElement, Influence)>

 <!ELEMENT InfluencedElement (Category, Name)>

 <!ELEMENT Influence (Type, Description)>

 <!ELEMENT Attacks (AttackOption*)>

 <!ELEMENT AttackOption (

 Tuple_Means_Preconditions)>

 <!ELEMENT Tuple_Means_Preconditions (Means,

 Preconditions*)>

 <!ELEMENT Means (Category, Description*)>

 <!ELEMENT Preconditions (Precondition)>

 <!ELEMENT Precondition (Category, Description*)>

 <!ELEMENT Effects (Tuple_VictimElement_Impact*)>

 <!ELEMENT Tuple_VictimElement_Impact (

 VictimElement, Impact)>

 <!ELEMENT VictimElement (Category, Name)>

 <!ELEMENT Impact (Type, Description)>

]>

Element

+Category
+Name

Change

+Type
+Description

Cause

Tuple_InfluencedElement_Influence

1

1..*

InfluencedElement Influence

1

1

1

1

1 1

Figure 3: Dimension group ”Cause”

The presence of the Tuple InfluencedElement Influence class is the only
true difference between the BNF form definition and the corresponding UML
class diagram. This class is used to represent the 1:1 relationship between
Influenced Element and Influence in a single tuple. However, the number of
such tuples is unbounded.

Please note that we have imposed no restrictions how often the same In-
fluenced Element may appear in the description of the same attack or defense
measure. Therefore, alongside with the description of various influences on
different elements, it is possible to describe simultaneously executed multiple
influences on the same element. In order to do this, multiple (Influenced
Element, Influence) tuples can be specified with an identical Influenced Ele-
ment.

In the UML diagram, we have derived Influenced Element and Influence
classes from Element and Change classes, respectively. As we will see later

9

in this section, we will reuse these base classes also for the definition of the
classes representing dimensions of the Effect group.

Finally, we would like to discuss the refinement of Influenced Element and
Influence. Compared to the taxonomy (see Section 3), both contain a slight
refinement. Influenced Element can be described in terms of element’s Cate-
gory and Name; Influence can be specified as its Type and Description. Form
the theoretical perspective, this refinement is not crucial because it does not
change the semantics. However, from the practical perspective it can bring
several benefits. Category can simplify the distinction between Elements in
cyber and in physical domains. Similarly, Type can simplify the distinc-
tion between changing the state, gaining knowledge, or having knowledge of
the corresponding Element. We intentionally specify no restrictions on how
Category and Type should be used or structured. Therefore, experts using
CP-ADL should be able to choose notations and structures most suitable for
the purpose of their work and/or reflecting specific constraints.

4.1.2. Dimension group ”Effect”

The dimension group Effect can be seen as the counterpart of the group
Cause. Both reflect changes in the system, former caused by an Action and
later triggered by the Cause. Therefore, their structure is essentially the same
and can be defined as follows (the corresponding UML diagram is depicted
in Figure 4):

<Cause> ::= (<Influenced Element>, <Influence>)

 [AND (<Influenced Element>, <Influence>)]*

<Influenced Element> ::= (<Category>, <Name>)

<Influence> ::= (<Type>, <Description>)

<Effect> ::= (<Affected Element>, <Impact>)

 [, (<Affected Element>, <Impact>)]*

<Affected Element> ::= (<Category>, <Name>)

<Impact> ::= (<Type>, <Description>)

<Action> ::= (<Method>, <Preconditions>)

 [OR (<Method>, <Preconditions>)]*

<Method> ::= (<Category>, <Description>)

<Preconditions> ::= <Precondition>

 [AND <Precondition>]*

<Precondition> ::= (<Category>, <Description>)

<CausalChain> ::= <AtomicAttack>

 [, <AtomicAttack>]*

<AtomicAttack> ::= ([<CausalChain>,](<Cause>, <Action>)

 [AND (<Cause>, <Action>)]*,

 <Effect>)

<!DOCTYPE CPADL [

 <!ELEMENT CPADL (CausalChain*)>

 <!ATTLIST CPADL

 name version #REQUIRED>

 <!ELEMENT CausalChain (AtomicAttack*)>

 <!ATTLIST CausalChain

 name ChainID #IMPLIED>

 <!ELEMENT AtomicAttack (Tuple_Targets_Attacks,

 Effects)>

 <!ATTLIST AtomicAttack

 name AttackID #IMPLIED

 name Details_RefCausalChainID #IMPLIED>

 <!ELEMENT Tuple_Targets_Attacks (Targets,

 Attacks)>

 <!ELEMENT Targets (

 Tuple_InfluencedElement_Influence*)>

 <!ELEMENT Tuple_InfluencedElement_Influence (

 InfluencedElement, Influence)>

 <!ELEMENT InfluencedElement (Category, Name)>

 <!ELEMENT Influence (Type, Description)>

 <!ELEMENT Attacks (AttackOption*)>

 <!ELEMENT AttackOption (

 Tuple_Means_Preconditions)>

 <!ELEMENT Tuple_Means_Preconditions (Means,

 Preconditions*)>

 <!ELEMENT Means (Category, Description*)>

 <!ELEMENT Preconditions (Precondition)>

 <!ELEMENT Precondition (Category, Description*)>

 <!ELEMENT Effects (Tuple_VictimElement_Impact*)>

 <!ELEMENT Tuple_VictimElement_Impact (

 VictimElement, Impact)>

 <!ELEMENT VictimElement (Category, Name)>

 <!ELEMENT Impact (Type, Description)>

]>

In general, a single change to the system, e.g., caused by an attack, can
cause multiple effects. Therefore, we define the Effect group as one or more
(Affected Element, Impact) tuples. As in the definition of the Cause dimen-
sion group, it is possible to specify multiple Impacts on the same or different
Affected Elements.

4.1.3. Dimension group ”Action”

Even considering cyber security, the same manipulation described in the
Cause dimension group, e.g., escalation of user privileges, can be realized by
using different Methods. In the case of CPS, the multiplicity of means for
the same manipulation is even bigger. It is because the same manipulation

10

Element

+Category
+Name

Change

+Type
+Description

Effect

Tuple_AffectedElement_Impact

1

1..*

AffectedElement Impact

1

1

1

1

1 1

Figure 4: Dimension group ”Effect”

often can be done by both cyber and physical means. Therefore, it should
be possible to describe various alternative Methods.

At the same time, certain Methods can only be executed and/or be suc-
cessful if multiple Preconditions hold. For instance, it can include simultane-
ous presence of several vulnerabilities, e.g., the absence of W⊕X protection
in conjunction with the unguarded buffer boundaries.

Consequently, we defined the dimension group Action as follows (see Fig-
ure 5 for the corresponding UML diagram):

<Cause> ::= (<Influenced Element>, <Influence>)

 [AND (<Influenced Element>, <Influence>)]*

<Influenced Element> ::= (<Category>, <Name>)

<Influence> ::= (<Type>, <Description>)

<Effect> ::= (<Affected Element>, <Impact>)

 [, (<Affected Element>, <Impact>)]*

<Affected Element> ::= (<Category>, <Name>)

<Impact> ::= (<Type>, <Description>)

<Action> ::= (<Method>, <Preconditions>)

 [OR (<Method>, <Preconditions>)]*

<Method> ::= (<Category>, <Description>)

<Preconditions> ::= <Precondition>

 [AND <Precondition>]*

<Precondition> ::= (<Category>, <Description>)

<CausalChain> ::= <AtomicAttack>

 [, <AtomicAttack>]*

<AtomicAttack> ::= ([<CausalChain>,](<Cause>, <Action>)

 [AND (<Cause>, <Action>)]*,

 <Effect>)

<!DOCTYPE CPADL [

 <!ELEMENT CPADL (CausalChain*)>

 <!ATTLIST CPADL

 name version #REQUIRED>

 <!ELEMENT CausalChain (AtomicAttack*)>

 <!ATTLIST CausalChain

 name ChainID #IMPLIED>

 <!ELEMENT AtomicAttack (Tuple_Targets_Attacks,

 Effects)>

 <!ATTLIST AtomicAttack

 name AttackID #IMPLIED

 name Details_RefCausalChainID #IMPLIED>

 <!ELEMENT Tuple_Targets_Attacks (Targets,

 Attacks)>

 <!ELEMENT Targets (

 Tuple_InfluencedElement_Influence*)>

 <!ELEMENT Tuple_InfluencedElement_Influence (

 InfluencedElement, Influence)>

 <!ELEMENT InfluencedElement (Category, Name)>

 <!ELEMENT Influence (Type, Description)>

 <!ELEMENT Attacks (AttackOption*)>

 <!ELEMENT AttackOption (

 Tuple_Means_Preconditions)>

 <!ELEMENT Tuple_Means_Preconditions (Means,

 Preconditions*)>

 <!ELEMENT Means (Category, Description*)>

 <!ELEMENT Preconditions (Precondition)>

 <!ELEMENT Precondition (Category, Description*)>

 <!ELEMENT Effects (Tuple_VictimElement_Impact*)>

 <!ELEMENT Tuple_VictimElement_Impact (

 VictimElement, Impact)>

 <!ELEMENT VictimElement (Category, Name)>

 <!ELEMENT Impact (Type, Description)>

]>

There are several syntactical differences between the definitions in BNF
form and as UML class diagram. We have introduced class Preconditions,
Tuple Method Preconditions as a means to represent 1 : 1 relationship be-

11

Action

ActionOption

Tuple_Method_Preconditions

Method

+Category
+Description

Preconditions

Precondition

+Category
+Description

1
1..*

1
1..*

11..* 1
1..*

1

1..*

1 1

Figure 5: Dimension Group ”Action”

12

tween a particular Method and corresponding Preconditions. In BNF form,
the relationship between these tuples is explicitly defined as OR. Further,
class Preconditions has been introduced in UML diagram in order to reflect
AND-composition of one or more Preconditions associated with a particular
Method.

Similar to the refinement of dimensions described previously, we introduce
refinement of Method and Precondition. Both can be specified in terms of
their Category and Description.

4.1.4. Structural and temporal relationships between dimension groups: Ato-
mic Attack, Attack Chain, and Attack Chain Folding

The relationship between various dimension groups is slightly more com-
plicated. In the simplest case, a manipulation of a single property of a single
element (described as the Cause dimension group) performed by an attack
or defense Methods (described within the Action dimension group) leads to
the desired change of a single property of the same or a different single el-
ement (described as the Effect dimension group). However, it should not
be always the case. Especially in the case of attacks on complex systems
(e.g., systems with redundancies and fallback capabilities) only simultaneous
manipulations performed on multiple elements will lead to the desired Ef-
fect(s). Therefore, an attack description language should be able to express
simultaneous Influences on the same or different Influenced Elements, i.e.,
one or more tuples described as part of Cause dimension group, whereby
each Cause should be associated with the corresponding Actions. We call
such simultaneous manipulations (including the resulting Effects) an Atomic
Attack.

Further, Effects themselves are changes introduced to the system. There-
fore, similar to the Cause, these changes can trigger follow-up Effect(s). We
will refer to such auto-induced effect propagations as Causal Chain. A Causal
Chain can be described as a sequence of Atomic Attacks. The reusing (Af-
fected Element, Impact) tuples of one Atomic Attack as (Influenced Element,
Influence) of the follow-up one enables value-based linking of two or more
Atomic Attacks in a Causal Chain of effect propagations. In the description
of the induced effect propagation chain, specification of Method (member
of Action dimension group) can be omitted. Preconditions can be used to
express constraints under which the described follow-up Effects will occur.

Considering Causal Chains, it is important to understand that not all
intermediate stages of effect propagation are of relevance for the security

13

analysis. For example, in the buffer overflow attack, depending on the se-
lected level of abstraction, the Influenced Element can be either process buffer
or the process themselves. Depending on the injected payload, the attacked
process will either crash or execute some malicious code. In the case of CPS,
the selection of relevant level of abstraction can be a very challenging task.
Therefore, the capability to fold the intermediate steps of effect propagation
chains, i.e., to hide irrelevant details without losing them, becomes an impor-
tant property of an attack description language. We will discuss the folding
alongside with the linking of attack descriptions in Section 5.

Concluding the above discussion about Atomic Attacks, Attack Chains,
and attack Folding, we define these as well as the relationships between the
dimension groups as follows (the corresponding UML diagram is depicted in
Figure 6):

<Cause> ::= (<Influenced Element>, <Influence>)

 [AND (<Influenced Element>, <Influence>)]*

<Influenced Element> ::= (<Category>, <Name>)

<Influence> ::= (<Type>, <Description>)

<Effect> ::= (<Affected Element>, <Impact>)

 [, (<Affected Element>, <Impact>)]*

<Affected Element> ::= (<Category>, <Name>)

<Impact> ::= (<Type>, <Description>)

<Action> ::= (<Method>, <Preconditions>)

 [OR (<Method>, <Preconditions>)]*

<Method> ::= (<Category>, <Description>)

<Preconditions> ::= <Precondition>

 [AND <Precondition>]*

<Precondition> ::= (<Category>, <Description>)

<CausalChain> ::= { <AtomicAttack>

 [, <AtomicAttack>]* }

<AtomicAttack> ::= ((<Cause>, <Action>)

 [AND (<Cause>, <Action>)]*, <Effect>)

 [OR <Folding>]

<Folding> ::= <CausalChain>

<!DOCTYPE CPADL [

 <!ELEMENT CPADL (CausalChain*)>

 <!ATTLIST CPADL

 name version #REQUIRED>

 <!ELEMENT CausalChain (AtomicAttack*)>

 <!ATTLIST CausalChain

 name ChainID #IMPLIED>

 <!ELEMENT AtomicAttack (Tuple_Targets_Attacks,

 Effects)>

 <!ATTLIST AtomicAttack

 name AttackID #IMPLIED

 name Details_RefCausalChainID #IMPLIED>

 <!ELEMENT Tuple_Targets_Attacks (Targets,

 Attacks)>

 <!ELEMENT Targets (

 Tuple_InfluencedElement_Influence*)>

 <!ELEMENT Tuple_InfluencedElement_Influence (

 InfluencedElement, Influence)>

 <!ELEMENT InfluencedElement (Category, Name)>

 <!ELEMENT Influence (Type, Description)>

 <!ELEMENT Attacks (AttackOption*)>

 <!ELEMENT AttackOption (

 Tuple_Means_Preconditions)>

 <!ELEMENT Tuple_Means_Preconditions (Means,

 Preconditions*)>

 <!ELEMENT Means (Category, Description*)>

 <!ELEMENT Preconditions (Precondition)>

 <!ELEMENT Precondition (Category, Description*)>

 <!ELEMENT Effects (Tuple_VictimElement_Impact*)>

 <!ELEMENT Tuple_VictimElement_Impact (

 VictimElement, Impact)>

 <!ELEMENT VictimElement (Category, Name)>

 <!ELEMENT Impact (Type, Description)>

]>

Note that in the UML diagram we have introduced the Tuple Cause Action
class in order to preserve clear relationship between different dimension groups.
Despite the slight syntactical differences, the presented UML diagram and
the BNF form remain semantically equivalent.

In both, BNF definition and UML diagram, a Causal Chain consists of
one or more Atomic Attacks. At the same time, the Atomic Attack can
be seen as a Folding of the more detailed attack description presented in
Causal Chain. In order to reflect this, in BNF form AtomicAttack has an
optional element Folding which is, in turn, CausalChain. This optional ele-
ment enables recursive definition of details of the folded attack description.
In the UML diagram, this recursion is defined as an aggregation relationship
between AtomicAttack and CausalChain classes.

4.2. CP-ADL XML data format

The complexity of the presented CP-ADL structure, especially of the re-
lationships between elements belonging to different taxonomy dimensions,
reflects the complexity and diversity of attacks on CPS. For the storage of

14

CausalChain

AtomicAttack

Cause Action

EffectTuple_Cause_Action

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1 1

+Folding

1

0..1

1 1

Figure 6: ”Atomic Attack” and ”Causal Chain”

15

attack descriptions and/or for the exchange of attack descriptions between
various tools, we need to define a data format upon the proposed CP-ADL
structure. Because of this complex relationships between dimensions, vari-
able amount of elements to be described, and variable size of any particular
element1, we see XML as the best suitable basis for the definition of the
CP-ADL data format.

A XML-based data format for CP-ADL can be derived directly from the
presented UML diagrams. As this step is rather trivial, we will omit here the
presentation of the format definition. Instead we would like to outline several
additional optimizations, which we would introduce by this step. First of all,
we would introduce a top-level ”wrapper” element, e.g., named CPADL,
which would act as a container for the descriptions of one or more attacks.
This element should contain a version member variable, in order to ensure the
backward compatibility despite the expected evolution of this data format.
Furthermore, compared to the structure definition, in the XML schema we
would introduce ID fields for the Atomic Attack and Attack Chain. These
should enable reusability of the attacks descriptions via their referencing in
the description of more complex attacks. In Section 5 we will discuss the
usage of IDs in attack linking and folding.

5. Linking and folding attack descriptions

Figure 7 illustrates the encapsulation of various defined CP-ADL ele-
ments. This simplified view illustrates that every Causal Chain consists of
one or more Atomic Attack descriptions, each of which specifies single change
to the system described at the level of abstraction selected by an analyst.
In this section we will explain how these CP-ADL elements can be used to
express various relationships between different attack descriptions.

5.1. Attack propagation

We first show how various types of relationships between different attacks
or attack steps can be represented with CP-ADL.

5.1.1. Linking between Effect and Cause within single Causal Chain

We should distinguish between cascading (avalanche-like) and triggered
attack effect propagations. In Section 4.1.4 we have defined such cascading

1This is especially due to the intended support of human-readable descriptions.

16

nnnnnnnnnnn

ne
e
n
e
n
ee

kkkknekkknek]]]]]]

ne
e
n
e
n
ee

keknkn]]]]]]

n�

deknkd

sseekndnknknn

nnnne]]]]]]

n�

tntnneneedtnekenk

tntnnenee

ttteek]]]]]]

n�

ktteekedtnekenk

tktnek

Figure 7: Encapsulation of CP-ADL elements, simplified view

effect propagations as Causal Chain. A straightforward example of a causal
chain is the Stuxnet’s cross-domain attack. Simplified2, when triggered by
a combination of conditions, the Stuxnet payload installed at PLC sends to
the frequency converter drives commands to change the maximum frequency
at which centrifuges rotate. Describing this attack in CP-ADL, this whole
action can be described as a single Atomic Attack. Preconditions are that
the payload is installed and triggered, Method is the description of the spe-
cially crafted command sequences sent via Profibus, Influenced Element is
the frequency converter drive, Influence is the change of the designated ro-
tation frequency, Affected Element are the centrifuges under the control of
the frequency converter drive, and the Impact is the rotation of centrifuges
with the speeds outside of the operational range they have been designed for
as well as the frequent change of the speed.

The rotation of the centrifuges with the speed outside of operational range
is, in turn, the Cause of the follow-up Effect, increased wear, reduced life time,
and finally physical damage of the affected centrifuges. This can be described
as a second Atomic Attack with the (Influenced Element, Influence) tuples
reusing one or more (Affected Element, Impact) tuples described in the first

2A detailed description of the Stuxnet attack can be found in [4].

17

Atomic Attack. As mentioned before, there is no need to specify Method in
the second Atomic Attack description. Preconditions expressed in the second
Atomic Attack might reflect the fact that the specified Effect only occurs if
the conditions described in Cause are applied over sufficient amount of time.

In order to reflect the tight cause-effect relationships between these two
Atomic Attacks, they can be described within a single Causal Chain section.
Please note that, even described as a part of the same Causal Chain, the
first Atomic Attack is of C2P (i.e., Cyber-to-Physical) and the second one of
P2P (i.e., Physical-to-Physical) type. This illustrate the fact that attacks on
CPS can cross the domain boundary and that the effect can propagate in a
different domain than the one in which the attack was initiated.

5.1.2. Linking between Effect and Cause in different Causal Chains

Indeed, it seems to be very natural to describe the effect propagation
initiated by an attack within a single Causal Chain. However, we think that
it is not always the most optimal solution. Especially if different attacks can
lead to the same Influence on Influenced Element it might be more reasonable
to describe the Causal Chain containing the effect propagation as a separate
attack. We see two major advantages of this. First, this will reduce the size
and thus improving the human readability of the XML file containing multi-
ple attack descriptions. Second, and most important, it will allow explicitly
depict relationships between different attacks and consequences thereof, thus
improving the ability to analyze the system and/or attack properties.

We would like to motivate such separation on one slightly more complex
example. Let us assume that an adversary has two distinct means, one of
which disables the heat dissipation system and another one increases the
heat production in a particular part of a CPS. Both these scenarios can be
described as two distinct Causal Chains. The Effect of both these attacks
will contain identical (Affected Element, Impact) tuples, e.g., describing the
raising temperature in this part of CPS. This tendency, in turn, can lead to
the situation when the temperature raises beyond the operational range of
some Electronic Control Unit (ECU) located in this part of the system. This,
in turn, can lead to the reduced performance or even crash of the affected
ECU. Depending on the role of the ECU in the CPS, this can lead to further
consequences to the whole system and, potentially, to its environment. The
outlined transition from the temperature raising tendency, through breaking
thresholds, and up to the resulting consequences can be described within
another separate Causal Chain. Therefore, linking across Causal Chains

18

enables reusability of the same effect propagations (described in a dedicated
Causal Chain) instead of replicating the same description multiple times.

Please note that, similarly to the linking between Effect and Cause within
single Causal Chain, the relationship is established based on the matching of
corresponding values. We also would like to discuss the cardinality relation-
ships between linked Causal Chains. As described above, the same Causal
Chain can be triggered by different attacks, each of which can be described
in numerous other Causal Chains. However, similar argumentation applies
to the opposite direction as well. As every attack can produce numerous
(Affected Element, Impact) tuples describing Effect of an attack, numerous
combinations of these tuples can be used as ”triggers” for the effect prop-
agations described in different Causal Chains. Therefore, the cardinality
relationship between linked Causal Chains is N : N .

5.1.3. Linking between Effect and Preconditions

Another kind of logical relationships is representative for complex attacks
executed as a sequence of multiple stages. In the car case study [2], an in-
fected ECU spreads infection in two stages. In the first stage, it sends to
a target ECU a request to enter the reprogramming mode. As no Authen-
tication and Authorization (AA) protection mechanisms are implemented,
the target ECU enters this mode. This enables the second stage, in which
the firmware of the ECU is reprogrammed with a malicious code. From the
attack propagation perspective, the Effect of the first stage enables certain
Preconditions required for the second stage of this attack.

We would like to emphasize the cardinality relationship between attack
descriptions linked this way. In general, multiple different attacks can pro-
duce to the same Effects. The same Effect(s) can enable Preconditions for
numerous follow-up attacks. Further, some attacks can require that a combi-
nation of multiple Preconditions is satisfied at the same time. Each of these
Preconditions can be enables by number of independent (and/or indepen-
dently described) attacks. Therefore, the relationship between the Causal
Chains producing Effects and the Causal Chains reusing these Effects as
Preconditions is N : N .

5.2. Attack encapsulation

We will now present how an attack descriptions can be reused and how
multiple attack descriptions can be organized in hierarchies.

19

5.2.1. An attack as Method of another one

In [2] has been shown that the engine will stop if the ECU controlling it
enters the reprogramming mode. This will ultimately cause that the car will
stop. Most critical to safety, this attack can be successfully executed even
during the car is driving at a high speed. It is self-evident that, if this attack
is executed on a highway, it can lead to a severe car accident.

Please note that, in this case, entering the reprogramming mode is the
Method by which attack on the engine’s ECU is performed. Of course, it is
possible to describe the entering reprogramming mode attack in all details
and then link the Effect and Cause values of the effect propagation chain
in the description of a single Causal Chain. However, we see two major
disadvantages of this approach. First, it will lead to the replication of the
same description multiple times. Such multiplicity of descriptions, especially
if performed manually, will inevitably lead to multiple different variants of
the description, thus preventing automation of the syntactical correlation
between attacks’ descriptions needed for the analysis. Second, this will lead
to overflowing of an attack description with many details, which logically
belong to different abstraction layers. As a consequence, the analysis of
information can become a more demanding task.

Instead, we propose to support in the CP-ADL language the possibility to
describe Method as a reference to another, already described attack. For this
purpose, the Category element of Method can be set to a predefined value
signaling that the Description element contains an ID of either an Atomic
Attack or a Causal Chain. The Category value can signal whether used ID
is the Atomic Attack ID or the Causal Chain ID.

This approach would mean that we introduce an unidirectional associa-
tion between classes CausalChain (see Figure 6) and Method (see Figure 5).
The cardinality of this association is 1 : N because the same (more funda-
mental) attack can be reused as Method in multiple different (more complex)
attacks. Please note that this definition is recursive.

Advantages of this language extension are following. Connections be-
tween different attacks will be explicitly expressed and only information at
the relevant abstraction layers will be described, thus simplifying the anal-
ysis of properties of attacks on CPS significantly. Furthermore, this enables
description of various Effects, i.e., consequences of an attack, under different
Preconditions. For instance, an attack intended to kill the motor of a car
(as described previously, in [2] it is done by the Method of commanding the

20

motor ECU to enter the reprogrammable mode) is only safety-critical under
certain Preconditions, e.g., driving at a high speed.

5.2.2. Hiding attack details

During both attack description and attack analysis, an expert has to deal
with the selection of an appropriate level of abstraction. By this decision, the
tradeoff is between the ability to abstract away the unnecessary details, thus
focusing on important aspects only, and the ability to describe all details,
which might be relevant for further investigations. In such situations, it is a
common best practice to provide a possibility to hide (or to fold, blind out)
irrelevant details without losing the information.

In CP-ADL structure, we have incorporated the possibility to express
a relationship between descriptions of the same attack at different levels of
abstractions. This possibility is defined as aggregation relationship between
classes AtomicAttack and CausalChain (see Figure 6). Implementing this
aggregation in the CP-ADL XML schema, the straightforward decision would
be to incorporate CausalChain block describing attack details as a part of
the AtomicAttack block. However, this would have disadvantages similar to
those described in Section 5.2.1 for the incorporation of an attack description
as Method in the description of another attack. Therefore, we prefer following
alternative. The folding of attack details can be specified as an association
between two separately defined Causal Chains. In the definition of CP-ADL
XML schema, this association can be realized as an optional attribute of the
AtomicAttack element, which points to the Causal Chain containing attack
details.

We would like to illustrate the usefulness of the attack folding on the
example of the attack on the engine’s ECU as it was described in [2]. The
Causal Chain containing the detailed description of the attack would start
with the Atomic Attack targeting the engine’s ECU in the form of requesting
it to enter reprogrammable mode. As a consequence, the process running on
this ECU stops. As a consequence thereof (described in the follow-up Atomic
Attack within the same Causal Chain) the motor stops. The subsequent
Atomic Attacks would describe further steps of effect propagation, such as
stopping of the wheels caused by the motor stop, and finally stopping of the
car. It is clear that such detailed description can be extremely lengthy. More
importantly, such detailed description can contain information irrelevant for
the security analysis. For instance, for the consideration of environmental
implications it might be interesting to describe an Atomic Attack containing

21

entering ECU into reprogramming mode described as Cause and the resulting
– after numerous of effect propagation steps – stopping of the car described
as Effect. Such Atomic Attack description would be fully sufficient for anal-
ysis and description of a Causal Chain, in which an analyst focuses on the
consequences of the car’s stopping, e.g., possible collisions with the objects
in the car’s environment, which, in turn, would lead to the physical damage,
injuries, legal and/or social consequences, etc.

Please note that, different from the previously discussed examples of link-
ing between attack descriptions, we have defined folding as a 1 : 1 relation-
ship. However, this operation is recursive and multiple layers of folding can be
described. Folding is also an optional component, thus enabling termination
of more detailed description at any necessary level of abstraction. Further-
more, Effect(s) described in the folded Atomic Attack should not necessarily
be identical to Effect(s) of the last Atomic Attack in the Causal Chain de-
scribing the same attack in more details. Instead, it can be a combination of
any (Affected Element, Impact) tuples of one or more Atomic Attacks within
the Causal Chain describing attack details. This enables the analysis- and
analyst-dependent selection of relevant tuples.

6. Application areas

We see several application areas of the proposed CP-ADL. In this section,
we will outline the three, in our opinion, most important ones: structured
documentation of known attacks on CPS, qualitative and quantitative analy-
sis of known attacks on CPS, and support of the CPS vulnerability analysis.

Structured attack description is a prerequisite for many other activities,
including attack analysis. It will ensure that all information aspects
needed for the analysis are documented. At the same time, it will
prevent description of the irrelevant information, thus simplifying and
speeding up various types of attack analysis.

Qualitative and quantitative attack analysis should reveal structural
attack properties as well as their frequency. In its simplest form, a com-
parison of two attack description should be able to determine whether
these are equivalent or not. If they aren’t, which properties distinguish
them from each other. Applied to the descriptions of already known
attacks, it should be possible to identify whether the described attack

22

is a principally new one or just an already known attack applied to yet
another CPS or CPS component. As a result, it should be possible to
identify and to document a variety of distinct attack aspects. We ex-
pect that the qualitative analysis will result in the consolidation of the
(currently – free-form textual) description into a more formal tree-like
taxonomies. Such taxonomies should greatly simplify the analysis of at-
tacks, foster collaborations across multiple research teams, and ensure
the interoperability across various tools. Furthermore, such taxonomies
will enable the automated attack analysis. The quantitative analysis
will provide insights regarding frequency of various attack methods or
selection of particular element as targets of manipulation. Both quali-
tative and quantitative analysis will provide information necessary for
the vulnerability analysis.

Vulnerability analysis is a common approach used to improve the sys-
tem’s security. The insights gained in the qualitative attack analysis
can be used to discover vulnerabilities existing in the system. The
frequency of particular kinds of attacks, provided by the quantitative
analysis, multiplied by the estimated costs of the successful attack pro-
vides a value commonly used to rank between different vulnerabilities.
Such ranking a necessary prerequisite for a cost-effective decision mak-
ing regarding which of the identified vulnerabilities should be mitigated.
It has been shown in computer and network security that such vulnera-
bility analysis can be successfully automated. This, in turn, can result
in better scalability and objectivity of vulnerability analysis, what ul-
timately will improve the security properties of CPS.

7. Conclusions

The Cyber-Physical Attack Description Language (CP-ADL) described
in this paper builds on a taxonomy designed to capture cyber-physical at-
tacks [12]. The language supports structured descriptions of conventional
cyber attacks as well as novel cross-domain attacks on cyber-physical sys-
tems. Furthermore, the language permits the expression of six semantically
different aspects (dimensions)of attacks and the complex relationships that
exist between them. The language also supports the specification of relation-
ships existing between attack descriptions, including causal chains of effect
propagation, relationships between attack stages and descriptions of attacks
at multiple levels of abstraction.

23

One of the key advantages of CP-ADL is its structure for describing at-
tacks discovered by different research groups. This structure is an important
prerequisite for qualitative and quantitative analyses of attacks on cyber-
physical systems. Such analyses provide knowledge and understanding of
the structural properties and probabilities of cyber-physical attacks. Fur-
thermore, they can help identify which one of several functionally equivalent
architectural solutions is more or less vulnerable to specific attacks. The re-
sulting knowledge and understanding are crucial to enhancing cyber-physical
system security and dependability.

Future research will focus on the development and population of a knowl-
edge base containing known attacks on cyber-physical systems. This knowl-
edge base, intended to provide a foundation for attack analyses, will introduce
new challenges and requirements that will contribute to the advancement
of CP-ADL. One area of enhancement is the specification of relationships
between descriptions of different attacks. The enhancement would reflect
aspects such as generalization and/or specialization of attack descriptions
at multiple abstraction levels and also indicate the semantic equivalence of
syntactically different descriptions.

8. Acknowledgement

This research was conducted while Dr. Yampolskiy and Dr. Horváth
were at Vanderbilt University, Nashville, Tennessee.

References

[1] Albright, D., Brannan, P., Walrond, C. 2010. Did Stuxnet
Take Out 1,000 Centrifuges at the Natanz Enrichment
Plant? Institute for Science and International Security,
Washington, DC (url: http://isis-online.org/uploads/isis-
reports/documents/stuxnet FEP 22Dec2010.pdf), 2010.

[2] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway,
S., Savage, S., Experimental security analysis of a modern automobile,
in: Proceedings of the IEEE Symposium on Security and Privacy (SP),
2010, pp. 447-462.

24

[3] Yampolskiy, M., Horvath, P., Koutsoukos, X. D., Xue, Y., Sztipanovits,
J., Systematic analysis of cyber-attacks on CPS-evaluating applicabil-
ity of DFD-based approach, in: Proceedings of the fifth International
Symposium on Resilient Control Systems, 2012, pp. 55-62.

[4] Falliere, N., Murchu, L. O., Chien, E., W32. Stuxnet Dossier. Version
1.4, Symantec, MountainView, California, 2011.

[5] Byres, E., Lowe, J., The myths and facts behind cyber security risks for
industrial control systems, in: Proceedings of the VDE Kongress, 2004.

[6] Huang, Y.-L., Cardenas, A.A., Amin, S., Lin, Z.-S., Tsai, H.-Y., Sastry,
S., Understanding the physical and economic consequences of attacks
on control systems, International Journal of Critical Infrastructure Pro-
tection (IJCIP), 2009, vol. 2, nr. 3, pp. 73-83.

[7] Rinaldi, S. M., Peerenboom, J. P., Kelly, T. K., Identifying, under-
standing, and analyzing critical infrastructure interdependencies. IEEE
Control Systems 21(6), 2001, pp. 11-25.

[8] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H.,
Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T., Compre-
hensive experimental analyses of automotive attack surfaces, in: Pro-
ceedings of the Twentieth USENIX Conference on Security, 2011.

[9] Slay, J., Miller, M., Lessons learned from the maroochy water breach.
Critical Infrastructure Protection, 2007, pp. 73-82.

[10] Hansman, S., Hunt, R., A taxonomy of network and computer attacks.
Computers & Security 24(1), 2005, pp. 31-43.

[11] Lippmann, R. P., Ingols, K. W., Scott, C., Piwowarski, K., Kratkiewicz,
K. J., Artz, M., Cunningham, R. K., Evaluating and strengthening en-
terprise network security using attack graphs, Defense Technical Infor-
mation Center, 2005.

[12] Yampolskiy, M., Horvath, P., Koutsoukos, X. D., Xue, Y., Sztipanovits,
J., Taxonomy for Description of Cross-Domain Attacks on CPS, in: Pro-
ceedings of the Second ACM International Conference on High Confi-
dence Networked Systems, 2013, pp. 135-142.

25

[13] National Institute of Standardsand Technology, National Vulnerability
Database, Gaithersburg, Maryland (url: http://nvd.nist.gov).

[14] MITRE, Common Vulnerabilities and Exposures, Bedford, Mas-
sachusetts (url: http://cve.mitre.org).

[15] United States Computer Emergency Readiness Team, 2014 Alerts,
Washington, DC(url: http://www.us-cert.gov/ncas/alerts), 2014.

[16] International Telecommunications Union, ITU-T Recommendation
X.1520, Geneva, Switzerland (url: http://www.itu.int/rec/T-REC-
X.1520-201104-I/en), 2014.

[17] MITRE, OVAL Language, Bedford, Massachusetts (url:
http://oval.mitre.org/language).

[18] Baker, J., Hansbury, M., Haynes, D., The OVAL Language Specification,
MITRE, Bedford, Massachusetts (url: http://ebookbrowsee.net/oval-
language-specification-08-08-2011-pdf-d222972411), 2011.

[19] National Institute of Standards and Technology, CVE XML Schema,
Gaithersburg, Maryland (url: http://nvd.nist.gov/schema/nvd-cve-
feed 2.0.xsd).

[20] McDonald, G., Murchu, L. O., Doherty, S., Chien, E. (2013). Stuxnet
0.5: The Missing Link, Symantec, Mountain View, California, 2013.

[21] Forbes, L., Vu, H., Udrea, B., Hagar, H., Koutsoukos, X. D., Yampol-
skiy, M., SecureCPS: Defending a Nanosatellite Cyber-Physical System,
in: Proceedings of The SPIE Defense and Security Symposium, 9085,
2014.

26

